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Fast evaluation of demagnetizing field in three dimensional
micromagnetics using multipole approximation∗

Xiaobo Tan, John S. Baras, and P. S. Krishnaprasad

Institute for Systems Research and
Department of Electrical and Computer Engineering

University of Maryland, College Park, MD 20742 USA

ABSTRACT

Computational micromagnetics in three dimensions is of increasing interest with the development of magnetostrictive
sensors and actuators. In solving the Landau-Lifshitz-Gilbert (LLG) equation, the governing equation of magnetic
dynamics for ferromagnetic materials, we need to evaluate the effective field. The effective field consists of several
terms, among which the demagnetizing field is of long-range nature. Evaluating the demagnetizing field directly
requires work of O(N2) for a grid of N cells and thus it is the bottleneck in computational micromagnetics. A
fast hierarchical algorithm using multipole approximation is developed to evaluate the demagnetizing field. We
first construct a mesh hierarchy and divide the grid into boxes of different levels. The lowest level box is the
whole grid while the highest level boxes are just cells. The approximate field contribution from the cells contained
in a box is characterized by the box attributes, which are obtained via multipole approximation. The algorithm
computes field contributions from remote cells using attributes of appropriate boxes containing those cells, and it
computes contributions from adjacent cells directly. Numerical results have shown that the algorithm requires work
of O(NlogN) and at the same time it achieves high accuracy. It makes micromagnetic simulation in three dimensions
feasible.

Keywords: Micromagnetics, demagnetizing field, multipole approximation

1. INTRODUCTION

Computational micromagnetics in three dimensions is of increasing interest with the development of magnetostrictive
sensors and actuators. The Landau-Lifshitz-Gilbert (LLG) equation is the governing equation of magnetic dynamics
for ferromagnetic materials.1 By integrating the LLG equation, we can solve for the evolution of magnetization
as well as the steady state magnetization profile. This helps us understand the underlying physical principles,
characterize material properties, and design and control magnetostrictive transducers.

The effective magnetic field Heff needs to be evaluated in solving the LLG equation. Heff is the sum of several
terms: the externally applied field Hext, the anisotropy field Hanis due to the crystalline anisotropy, the exchange
field Hexch due to the quantum-mechanical exchange effect between nearest neighbours, and the demagnetizing
field Hdemag produced by the whole magnetization distribution. The last term is non-local, because the decay of
the demagnetizing field with distance is so slow that all interactions must be accounted for. Therefore evaluation
of Hdemag is the most time-consuming part and thus the bottleneck in computational micromagnetics. For a
discretization grid of N cells, an amount of work of O(N2) is required to evaluate all pairwise interactions. In three
dimensional micromagnetics, to be of physical interest, the simulation is usually involved in thousands of cells. As a
result, the computation would be prohibitive if we calculate the demagnetizing field directly.

Many techniques have been proposed to speed up the evaluation of Hdemag. The simplest method is truncation
of the interaction range.2 Although it reduces the computation time to O(N), the loss of accuracy is significant.
The Fast Fourier Transform (FFT) technique is used widely and it requires work of O(NlogN).3–5 Multipole
approximation is another useful method to accelerate the computation of Hdemag.6,4 The general strategy of the
multipole algorithm is clustering cells at different spatial scales and using multipole expansions to evaluate the
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interactions between clusters that are sufficiently far away from each other. The interactions between nearby cells
are calculated directly. Greengard adopted a two-pass (upward and downward) multipole algorithm in electrostatic
calculations and obtained O(N) complexity.7 Following this approach, a fast algorithm fully implementing the
multipole and local expansions of the field integral was shown to yieldO(N) computation time in 2D micromagnetics.4

But this technique can’t be generalized to 3D directly because the closed forms of multipole and local expansions in
3D do not exist. Blue and Scheinfein used only a single upward pass in multipole expansion for 2D micromagnetics,
which yielded a computation time of O(NlogN).6 Direct generalization of this algorithm to 3D case is not trivial
either.

Inspired by the work of Blue and Scheinfein,6 this paper is aimed at proposing a simple but efficient hierarchical
algorithm for evaluation of Hdemag in 3D. We first construct a mesh hierarchy and divide the grid into boxes of
different levels. The approximate field contribution from the cells contained in a box is characterized by the box
attributes, which are obtained via multipole approximation. The algorithm computes field contributions from remote
cells using attributes of appropriate boxes containing those cells, and it computes contributions from adjacent cells
directly. The paper is organized as follows: Section 2 describes the fast algorithm in detail, Section 3 presents the
numerical results and Section 4 provides the conclusions.

2. FAST HIERARCHICAL ALGORITHM USING MULTIPOLE APPROXIMATION

Assuming that a ferromagnetic body with magnetization M occupies a region V , the demagnetizing field at r,
Hdemag(r), can be written down directly from magnetostatics8:

Hdemag(r) = −

∫
V

(r− r′)∇ ·M(r′)

‖ r− r′ ‖
dτ ′ +

∮
∂V

(r− r′)M(r′) · n(r′)

‖ r− r′ ‖
ds′, (1)

where dτ ′, ds′ are the volume element and the area element, respectively, the integrals are taken over the space
variable r′, “∇·” is the divergence operator with respect to r′, ‖ · ‖ is the Euclidean norm of a 3D vector, ∂V is the
boundary of V , and n(r′) is the unit outward normal at r′. It is clear from (1) that Hdemag depends on the whole
distribution of M.

In this paper, we consider a ferromagnetic body with rectangular geometry. We discretize the body into cells
of size d0. The numbers of cells along the x, y, z axes are denoted by Nx, Ny and Nz, so the total number of cells
N = NxNyNz. M is assumed to be constant within each cell (including at the boundary).

In this section, we will first look at the demagnetizing field Hd produced by a cell with magnetization M. The
analytic expression for Hd turns out to be very complicated. We then show that Hd can be approximated by the
field produced by a magnetic dipole with moment Md3

0 located at the center of the cell. Although the dipole formula
looks much simpler, direct pairwise evaluation is still very time-consuming when N is large. A hierarchical algorithm
incorporating multipole approximation is then used to accelerate the evaluation of Hdemag.

2.1. Demagnetizing Field Contribution from a Cell

We want to evaluate the demagnetizing field Hd at the center of cell (i, j, k) produced by cell (i′, j′, k′) with
magnetization M. Denote the region that cell (i′, j′, k′) occupies as Ω. Since M is constant within Ω, we have
∇ ·M = 0 and only the second term in (1) survives. Let Hdx,Hdy,Hdz be the x, y, z components of Hd, and let
nx = i− i′, ny = j − j′, nz = k − k′. It follows that

Hdx =

∮
∂Ω

(x− x′)M · n

[
√

(x− x′)2 + (y − y′)2 + (z − z′)2]3
dx′dy′dz′, (2)

where (x y z)T = d0(nx ny nz)
T , and x′, y′, z′ ∈ [−d0

2 ,
d0

2 ]. Carrying out the integral, we will get the analytic
expression for Hdx,

Hdx = Mx(
4∑
i=1

arctan lxi −
8∑
i=5

arctan lxi) +My ln

∏4
i=1 lyi∏8
i=5 lyi

+Mz ln

∏4
i=1 lzi∏8
i=5 lzi

, (3)

where Mx,My,Mz are the x, y, z components of M, and lxi, lyi, lzi, i = 1, · · · 8 are functions of nx, ny, nz, as defined
in Appendix A. Similar expressions can be obtained for Hdy and Hdz. Note that Hd does not depend on the cell
size d0; instead, it depends only on M and (nx ny nz)

T .



2.2. Approximation to Hd by the Dipole Formula

Expanding
x− x′

[
√

(x− x′)2 + (y − y′)2 + (z − z′)2]3
(4)

in (2), we will get

x

‖ r ‖3
+

3x2− ‖ r ‖2

‖ r ‖5
x′ +

3xy

‖ r ‖5
y′ +

3xz

‖ r ‖5
z′ +O(

x′2 + y′2 + z′2

‖ r ‖4
), (5)

where r= (x y z)T . Plugging the first order approximation in (5) rather than (4) into (2) and carrying out the
integral leads to the approximation to Hdx, denoted as H̃dx:

H̃dx =
[3(M · r)x−Mx ‖ r ‖2]d3

0

‖ r ‖5
. (6)

Similarly, we can get H̃dy and H̃dz. It’s easy to see that, letting H̃d = (H̃dx H̃dy H̃dz)
T and r̂ = r/ ‖ r ‖,

H̃d =
[3(M · r̂)r̂−M]d3

0

‖ r ‖3
, (7)

which is the familiar dipole formula.

Defining the error

e =
‖ H̃d −Hd ‖

‖ Hd ‖
, (8)

we expect e to be of order O(1/(n2
x + n2

y + n2
z)) from (2), (5) and x′, y′, z′ ∈ [−d0

2 ,
d0

2 ].

The dipole formula (7) is much simpler than (3), which we shall refer as the integral formula. But we can’t be
too optimistic here. When N goes large, the computation time of direct pairwise evaluation increases with O(N2).
In other words, halving the cell size will multiply the computation time by 64. Even with the dipole formula, the
computation may become prohibitive well before the grid is fine enough. Thus we resort to the following hierarchical
algorithm.

2.3. A Hierarchical Evaluation Algorithm

As pointed out earlier, the cell size d0 does not appear in the analytic expression of Hd, therefore from now on we
will assume unit cell size. We start with a 3D grid of N cells and embed the grid into a box of size 2m, with the
smallest possible m to enclose the grid. Mesh level 0 corresponds to the entire computational box, while mesh level
L+ 1 is obtained from level L by subdividing each box into eight subboxes. Continue this process until there is at
most one cell in each box. A tree structure is imposed on this mesh hierarchy, so that if B is a box at level L, the
eight boxes at level L+ 1 obtained by subdividing B are considered its children.

As we will show in the next subsection, the approximate demagnetizing field contribution from cells contained
in each box can be characterized with two attributes of that box. Assume that we have got these attributes for all
boxes and pick a threshold value β. The following steps can be taken to evaluate the field at the center of each cell
in the grid:

• Step 1. Put all boxes of level 1 on a stack (since the box of level 0 will contain the current cell);

• Step 2. If the stack is empty, go to Step 6; otherwise

• Step 3. Take the last box on the stack. Denote the distance between the center of the box and the field point

(i.e., the center of the current cell) as d, and the size of the box as a. Let ρ =
√

2
2
a
d . If ρ < β, which implies

that the box is far enough away, compute the contributions from all cells contained in that box using only the
attributes of the box and remove the box from the stack; otherwise



• Step 4. If the box contains only one cell, compute the contribution of the cell directly using the integral formula
and remove the box from the stack; otherwise

• Step 5. Remove the box from the stack, put all its children boxes on the stack, and go to Step 2;

• Step 6. If the field evaluation at centers of all cells is completed, go to Step 7; otherwise go to Step 1 and start
field evaluation for the next cell.

• Step 7. End

Figure 1 illustrates the idea for a 2D 8 by 8 grid, but the same idea applies in a 3D grid. To evaluate the field
at the center of cell A, we need only calculate the contributions from the solid line boxes. Since in a N -cell grid,
the field evaluation at one point involves O(logN) boxes, the work to evaluate the field at centers of all N cells is
O(NlogN).

 A

Figure 1. An 8× 8 grid of cells divided into boxes suitable for evaluation of the demagnetizing field at the center
of cell A.

2.4. Multipole Approximation to the Dipole Formula

We now derive the attributes for each box. Assume that a box is centered at the origin and that a cell with
magnetization M is contained in the box. Let the center of the cell be r0. From (7), the demagnetizing field at r,
produced by the cell, is approximately

H̃d(r− r0) =
3[M · (r− r0)](r − r0)− ‖ r− r0 ‖2 M

‖ r− r0 ‖5
. (9)

Taking Taylor’s series expansion to the first order, we have

H̃d(r− r0) ≈ H̃d(r) +
dH̃d(r)

dr
(−r0) (10)

=
3(M · r̂)r̂−M

‖ r ‖3
−

3[r̂MT + Mr̂T + (M · r̂)(I− 5r̂r̂T )]r0

‖ r ‖4
, (11)

where I is the identity matrix. If we define the approximation error in (10) in a similar way as in (8), it is expected
to be O(‖ r0 ‖2 / ‖ r ‖2). Therefore when the field point is far enough away from the center of a box (comparing
with the size of the box), the total approximation error incurred in (5) and (10) will be small enough. The first term
of (11) is linear in M, and the second term is linear in elements of the matrix MrT0 . Having noticed that M and r0

are all the useful information associated with the cell, we are now ready for deriving the attributes for each box.



Suppose a box b has k cells, each with center position r0(s) and magnetization M(s), s = 1, · · · , k. There are two

attributes associated with box b: A1(b) =
∑k
s=1 M(s) and A2(b) =

∑k
s=1 M(s)rT0 (s).

Let Dij , (i, j = 1, 2, 3) be the i-th row j-th column element of dH̃d(r)/dr, and write Dij as θTijM. Note that θij
is a function of only r. Let Θi = (θi1, θi2, θi3), i = 1, 2, 3, and let

h(b) = [trace(ΘT
1 A2(b)), trace(ΘT

2 A2(b)), trace(ΘT
3 A2(b))]T . (12)

Then it’s easy to verify that the demagnetizing field at r produced by all cells inside box b is approximately

k∑
s=1

H̃d(r− r0(s)) ≈
[A1(b) · r̂]r̂−A1(b)

‖ r ‖3
− h(b). (13)

The work to compute the attributes for all boxes is O(NlogN) since each cell is involved in O(logN) boxes. After
we obtain the attributes, the field evaluation at centers of N cells is of O(NlogN) as mentioned in Subsection 2.3.
Thus the total work of the algorithm is still O(NlogN).

3. NUMERICAL RESULTS

Three methods of evaluating the demagnetizing field are compared: direct pairwise evaluation using the integral
formula (Integral Algorithm, abbreviated as IA), direct pairwise evaluation using the dipole formula (Dipole Algo-
rithm, abbreviated as DA), and the fast hierarchical algorithm (abbreviated as FA). We take the result of IA as

the true value, and calculate the root mean square (RMS) errors for DA and FA. Let Hi,j,k
IA ,Hi,j,k

DA ,Hi,j,k
FA be the

demagnetizing field at the center of cell (i, j, k) calculated using IA, DA, FA, respectively. Then the RMS errors for
DA and FA are defined as

eDARMS =

√√√√∑i,j,k ‖Hi,j,k
DA −Hi,j,k

IA ‖2∑
i,j,k ‖Hi,j,k

IA ‖2
,

eFARMS =

√√√√∑i,j,k ‖Hi,j,k
FA −Hi,j,k

IA ‖2∑
i,j,k ‖ Hi,j,k

IA ‖2
.

Table 1 compares IA, DA and FA for an 8 by 8 by 16 grid. All the numerical experiments reported in this paper
were done on Ultra 10 workstations of Sun Microsystems.

Table 1. Results of IA, DA and FA for an 8 by 8 by 16 grid. β is the threshold value in FA.

Algorithm Time (sec.) RMS error
IA 89 0
DA 6 1.5× 10−1

FA, β = 0.2 17 5.9× 10−4

FA, β = 0.4 5 1.7× 10−2

FA, β = 0.6 2 6.6× 10−2

FA, β = 0.7 1 1.4× 10−1

From Table 1, we can control the accuracy of FA by varying the threshold β. The algorithm can be as accurate
as desired. FA outperforms DA in both computing time and RMS error within a wide range of β.

Table 2 compares IA and FA for grids of different sizes.

From Table 2, it is clear that the computation time of IA increases with O(N2), while that of FA increases
with O(N logN). When N goes bigger, we’ll get more out of the fast algorithm. Note that the error in Table 2 is
acceptable in consideration of the error incurred by the discretization.



Table 2. Results of DA and FA for different grid sizes. β = 0.4.

Grid size Time (IA) (sec.) Time (FA) (sec.) RMS error of FA
6 by 6 by 12 15 2 1.3× 10−2

8 by 8 by 16 89 5 1.5× 10−2

12 by 12 by 24 928 28 1.7× 10−2

16 by 16 by 32 5,612 80 1.7× 10−2

The fast algorithm has been used in a 3D micromagnetics and magnetostriction computation program.9 Figure
2 shows the H −M hysteresis curve of a 3D 2 × 2 × 5 grid computed using the program, where H is the external
field and M is the bulk magnetization of the ferromagnetic body.
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Figure 2. Hysteresis curve of a 2× 2× 5 grid computed using the 3D micromagnetic program.

4. CONCLUDING REMARKS

A fast algorithm using multipole approximation is presented. It’s easy to implement and yields computation time of
O(NlogN). By choosing the appropriate threshold value, we can make the algorithm as accurate as desired while
maintaining acceptable computing speed. It makes micromagnetic computation in three dimensions feasible.

APPENDIX A. EXPRESSIONS FOR lxi, lyi, lzi, i = 1 · · · 8, in (3)

lx1 =
(ny + 1

2 )(nz −
1
2 )

(nx + 1
2 )
√

(nx + 1
2 )2 + (ny + 1

2 )2 + (nz −
1
2 )2

, lx2 =
(ny −

1
2 )(nz + 1

2 )

(nx + 1
2 )
√

(nx + 1
2 )2 + (ny −

1
2 )2 + (nz + 1

2 )2
,

lx3 =
(ny + 1

2 )(nz + 1
2 )

(nx −
1
2 )
√

(nx −
1
2 )2 + (ny + 1

2 )2 + (nz + 1
2 )2

, lx4 =
(ny −

1
2 )(nz −

1
2 )

(nx −
1
2 )
√

(nx −
1
2 )2 + (ny −

1
2 )2 + (nz −

1
2 )2

,

lx5 =
(ny + 1

2 )(nz + 1
2 )

(nx + 1
2 )
√

(nx + 1
2 )2 + (ny + 1

2 )2 + (nz + 1
2 )2

, lx6 =
(ny −

1
2 )(nz −

1
2 )

(nx + 1
2 )
√

(nx + 1
2 )2 + (ny −

1
2 )2 + (nz −

1
2 )2

,



lx7 =
(ny + 1

2 )(nz −
1
2 )

(nx −
1
2 )
√

(nx −
1
2 )2 + (ny + 1

2 )2 + (nz −
1
2 )2

, lx8 =
(ny −

1
2 )(nz + 1

2 )

(nx −
1
2 )
√

(nx −
1
2 )2 + (ny −

1
2 )2 + (nz + 1

2 )2
,

ly1 = nz + 1
2 +

√
(nx + 1

2 )2 + (ny + 1
2 )2 + (nz + 1

2 )2, ly2 = nz + 1
2 +

√
(nx −

1
2 )2 + (ny −

1
2 )2 + (nz + 1

2 )2,

ly3 = nz −
1
2 +

√
(nx −

1
2 )2 + (ny + 1

2 )2 + (nz −
1
2 )2, ly4 = nz −

1
2 +

√
(nx + 1

2 )2 + (ny −
1
2 )2 + (nz −

1
2 )2,

ly5 = nz + 1
2 +

√
(nx −

1
2 )2 + (ny + 1

2 )2 + (nz + 1
2 )2, ly6 = nz + 1

2 +
√

(nx + 1
2 )2 + (ny −

1
2 )2 + (nz + 1

2 )2,

ly7 = nz −
1
2 +

√
(nx + 1

2 )2 + (ny + 1
2 )2 + (nz −

1
2 )2, ly8 = nz −

1
2 +

√
(nx −

1
2 )2 + (ny −

1
2 )2 + (nz −

1
2 )2,

lz1 = ny + 1
2 +

√
(nx + 1

2 )2 + (ny + 1
2 )2 + (nz + 1

2 )2, lz2 = ny + 1
2 +

√
(nx −

1
2 )2 + (ny + 1

2 )2 + (nz −
1
2 )2,

lz3 = ny −
1
2 +

√
(nx + 1

2 )2 + (ny −
1
2 )2 + (nz −

1
2 )2, lz4 = ny −

1
2 +

√
(nx −

1
2 )2 + (ny −

1
2 )2 + (nz −

1
2 )2,

lz5 = ny + 1
2 +

√
(nx −

1
2 )2 + (ny + 1

2 )2 + (nz + 1
2 )2, lz6 = ny + 1

2 +
√

(nx + 1
2 )2 + (ny + 1

2 )2 + (nz −
1
2 )2,

lz7 = ny −
1
2 +

√
(nx + 1

2 )2 + (ny −
1
2 )2 + (nz + 1

2 )2, lz8 = ny −
1
2 +

√
(nx −

1
2 )2 + (ny −

1
2 )2 + (nz −

1
2 )2.

REFERENCES

1. W. F. Brown, Jr., Micromagnetics, John Wiley & Sons, New York, 1963.

2. J. Zhu and H. N. Bertram, “Micromagnetic studies of thin metallic films,” J. Appl. Phys. 63(8), pp. 1788–1791,
1987.
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